Reference Standard

5-Fluoroindole (5-Fluoro-1,3-dihydro-2H-indol-2-one)

Molecular Formula: C_8H_6FNO
Molecular Weight: 151.14
CAS Number: 56341-41-4

Catalogue Number: MM3568.02
Lot Number: 87374
Long-term Storage: 2 to 8 °C, dark
Appearance: beige solid
Melting Point (DSC): 145 °C
Assay 'as is': 99.2 %

Date of shipment: 2016-May-13

This certificate is valid one year from the date of shipment provided the substance is stored under the recommended conditions unopened in the original container.
I. Identity

The identity of the reference substance was established by following analyses.

Ia. 1H-NMR Spectrum

Conditions: 400 MHz, DMSO-d$_6$

The structure is confirmed by the signals of the spectrum and their interpretation.
Ib. Mass Spectrum

Method: HRMS; 3.5 kV ESI+; capillary temperature: 269 °C

Theoretical value: 152.05062

The signal of the MS spectrum is consistent with the theoretical value and its interpretation is consistent with the structural formula.
Ic. **IR Spectrum**

Method: Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy

The signals of the IR spectrum and their interpretation are consistent with structural formula.

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Wavenumber [cm$^{-1}$]</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2044.65</td>
<td>82.094</td>
</tr>
<tr>
<td>2</td>
<td>1662.34</td>
<td>61.6435</td>
</tr>
<tr>
<td>3</td>
<td>1463.96</td>
<td>56.5733</td>
</tr>
<tr>
<td>4</td>
<td>1400.93</td>
<td>74.6701</td>
</tr>
<tr>
<td>5</td>
<td>1314.25</td>
<td>68.0441</td>
</tr>
<tr>
<td>6</td>
<td>1180.83</td>
<td>56.705</td>
</tr>
<tr>
<td>7</td>
<td>1134.3</td>
<td>73.7786</td>
</tr>
<tr>
<td>8</td>
<td>969.759</td>
<td>68.4179</td>
</tr>
<tr>
<td>9</td>
<td>821.527</td>
<td>97.753</td>
</tr>
<tr>
<td>10</td>
<td>744.388</td>
<td>61.1085</td>
</tr>
<tr>
<td>11</td>
<td>670.142</td>
<td>46.6875</td>
</tr>
</tbody>
</table>

MM3568.02 lot number 87374

LGC GmbH, Im Biotechnologiepark, TGZ II, D-14943 Luckenwalde, Germany
II. Purity

IIa. High Performance Liquid Chromatography (HPLC)

The purity of the reference substance was analysed by high performance liquid chromatography (HPLC).

HPLC Conditions:

Column: Cortecs UPLC C18 + 1.6 µm, 75 x 2.1 mm

Conditions:
- Column: Cortecs UPLC C18 + 1.6 µm, 75 x 2.1 mm
- Mobile Phase A: Water, 0.1 % HCOOH
- Mobile Phase B: Acetonitrile, 0.1 % HCOOH
- Flow rate: 0.50 ml/min
- Temperature: 40 °C

Detector: DAD
- Wavelength: 210 nm

Injector: Auto
- Volume: 1 µl
- Solution: 0.040 mg/ml in Acetonitrile/Water 50/50 (v/v)

Area Percent Report - Sorted by Signal

<table>
<thead>
<tr>
<th>Pk#</th>
<th>Retention Time</th>
<th>Area</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.713</td>
<td>11.2975</td>
<td>99.32</td>
</tr>
<tr>
<td>2</td>
<td>2.959</td>
<td>0.0185</td>
<td>0.16</td>
</tr>
<tr>
<td>3</td>
<td>3.118</td>
<td>0.0587</td>
<td>0.52</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>11.3747</td>
<td>100.00</td>
</tr>
</tbody>
</table>

For the calculation the system peaks were ignored. The content of the analyte was determined as the ratio of the peak area of the analyte and the cumulative areas of the purities, added up to 100 %.
Results:
Average 99.32 %
Number of results n=3
Standard deviation < 0.01 %

IIb. Water Content
Method: Karl Fischer titration

Results:
Average 0.05 %
Number of results n=3
Standard deviation < 0.01 %

Ilc. Residual Solvents

<table>
<thead>
<tr>
<th>Residual Solvent</th>
<th>Average</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylene chloride</td>
<td>0.08 %</td>
<td>'H-NMR</td>
</tr>
</tbody>
</table>

III. Final Result

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromatographic purity (HPLC)</td>
<td>99.32 %</td>
</tr>
<tr>
<td>Water content</td>
<td>0.05 %</td>
</tr>
<tr>
<td>Residual solvents</td>
<td>0.08 %</td>
</tr>
<tr>
<td>Assay (100 % method)¹</td>
<td>99.19 %</td>
</tr>
</tbody>
</table>

The assay is assessed to be 99.2 % 'as is'

The assay 'as is' is equivalent to the assay based on the not anhydrous and not dried substance respectively.

Release Date:
Luckenwalde, 2015-October-28

Signed:
Dr. Sabine Schröder
Product Release

¹ The calculation of the 100 % method follows the formula:

\[
\text{Assay (\%)} = \left(100 \% - \text{volatile contents}\right) \times \frac{\text{Purity (\%)}}{100}\%
\]

Volatile contents are considered as absolute contributions, purity is considered as relative contribution.

MM3568.02 lot number 87374
LGC GmbH, lm Biotechnologiepark, TGZ II, D-14943 Luckenwalde, Germany