

Certificate of Analysis

Reference Standard

Methyl 2-Hydroxy-2,2-dithiophen-2-ylacetate

Molecular Formula: Molecular Weight: CAS Number: C₁₁H₁₀O₃S₂ 254.33 26447-85-8 Catalogue Number: MM1293.05

Lot Number: 451704

Long-term Storage: 2 to 8 °C, dark

Appearance: light brown solid

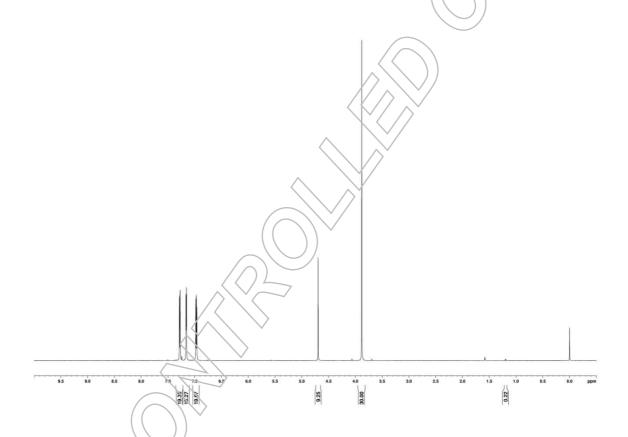
Melting Point: 93 °C
Assay 'as is': 99.0 %

Date of shipment: 2018-July-02

This certificate is valid for two years from the date of shipment provided the substance is stored under the recommended conditions unopened in the original container.

LGC Quality

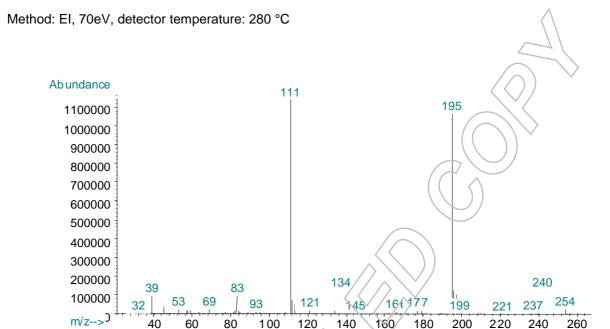
ISO 9001:2008



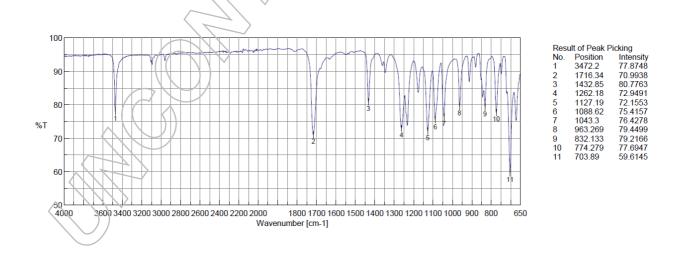
I. Identity

The identity of the reference substance was established by following analyses.

Ia. ¹H-NMR Spectrum


Conditions: 400 MHz, CDCl₃

The structure is confirmed by the signals of the spectrum and their interpretation.


lb. Mass Spectrum

The signals of the mass spectrum and their interpretation are consistent with the structural formula.

Ic. IR Spectrum

Method: Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy

The signals of the IR spectrum and their interpretation are consistent with the structural formula.

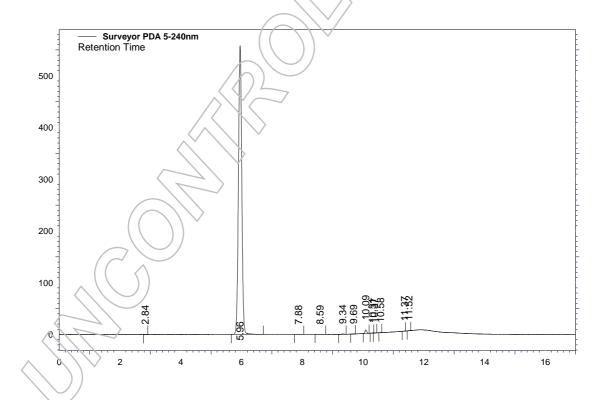
II. Purity

IIa. High Performance Liquid Chromatography (HPLC)

The purity of the reference substance was analysed by high performance liquid chromatography (HPLC).

HPLC Conditions:

Column: Conditions: Detector: Injector: Hypersil Gold C18 1.0 ml/min, 40 °C DAD Auto


5 μm, 150 x 4.6 mm 0-6 min Water/Acetonitrile 60/40 240 nm 3 μl; 0.0952 mg/ml in

6-9 min Water/Acetonitrile to 10/90

Water/Acetonitrile 50/50 (v/v)

9-12 min Water/Acetonitrile to 60/40 12-17 min Water/Acetonitrile 60/40 (v/y);

0.1 % H₃PO₄

Area Percent Report - Sorted by Signal

Pk#	Retention Time	Area	Area_% \
1	2.84	769	0.02
2	5.96	4244568	99.11
3	7.88	1313	0.03
4	8.59	1794	0.04
5	9.34	4104	0.10
6	9.69	438	(0,01)
7	10.09	26241	0.61
8	10.31	329	0.01
9	10.37	373	0.01
10	10.58	715	(
11	11.37	790	0.02
12	11.52	1288	0.03
Γotals		4282722	100.00

For the calculation the system peaks were ignored. The content of the analyte was determined as ratio of the peak area of the analyte and the cumulative areas of the purities, added up to 100 %.

Results:

Ilb. Water Content

Method: Karl Fischer titration

Results:

Average 0.05 %

Number of results n=3

Standard deviation < 0.01 %

IIc. Residual Solvents

Method: 1H-NMR

Result: 0.09 % 2-Propanol

III. Final Result

Chromatographic purity (HPLC)99.11 %Water content0.05 %Residual solvents0.09 %Assay (100 % method)¹98.97 %

The assay is assessed to be 99.0 % 'as is'

The assay 'as is' is equivalent to the assay based on the not anhydrous and not dried substance respectively.

Release Date:

Luckenwalde, 2018-03-22

Dr. Sabine Schröder Product Release

¹ The calculation of the 100 % method follows the formula:

Assay (%) = (100 % - volatile contents) * Purity (%) 100 %

Volatile contents are considered as absolute contributions, purity is considered as relative contribution.